New Membrane Applications in Gas Processing

By

Kaaeid A. Lokhandwala and Marc Jacobs Membrane Technology and Research, Inc.

1360 Willow Road, Menlo Park, CA 94025

Membrane Separation Mechanism

Membrane Selectivity

$$\frac{P_1}{P_2} = \frac{D_1 \cdot S_1}{D_2 \cdot S_2}$$

MTR's Rubbery Membranes Reject Methane and preferentially permeate the heavy hydrocarbons

Glassy v/s Rubbery Membranes

Glassy Membranes

Fast	Gas					S	low Gas
	Hydrogen		Nitrogen		Ethane		Hexane
H ₂ O		CO2		Methane		Propane	_

Rubbery Membranes

Fast Gas Slow Gas

	Hexane	Ethane		Methane	Nitrogen
H ₂ O		Propane	CO ₂	Hydr	ogen

Membrane System Installations

Gas/Gas Separation Systems

 H_2/N_2 , CH_4

~ 200 Units

Glassy

 O_2/N_2

~ 5,000 Units

Membranes

CO₂/CH₄

~ 200 Units

Vapor/Gas Separation Systems

VOC/Air

Hydrocarbon/ N_2 . $CH_4 \sim 100$ Units

Rubbery Membranes

MTR's Composite Membrane

MTR Spiral Wound Cartridge

NGL Separation Skid

Flow Capacity

Max: 8 MMSCFD

Operated: 2.5-3.0 MMSCFD

Pressure rating

Max: 1250 psig

Operated: 475 psig

Temperature

Max: 135°F

Operated: 100-125°F

Field Data - Feed/Permeate Flow rates

Location: Chevron's Lost Hills

Station, CA

Feed pressure: 450 psig

Avg. Feed Flow rate: 2.8 MMSCFD

Avg. Permeate Flow rate: 0.6 MMSCFD

Field data - Percent Removal Rates

Component	Average % Removal
Propanes	55.7
Butanes	61.0
Pentanes	68.1
Hexanes	74.0
Octanes	91.4

Field Data - Hydrocarbon Dewpoints

NGL Separation and Recovery Applications

- Well-head Gas Dewpoint Control
- Associated Gas Liquids Recovery
- Engine and Turbine Fuel Gas Conditioning
- Propane Refrigeration Plant Debottleneck
- Re-injection Gas Liquids Recovery
- Flare Gas Liquids Recovery/Conditioning
- Vapor Recovery from Storage Tank Losses

Wellhead Dewpoint Control

Value of NGL (@ \$ 14/bbl): \$ 1.2 Million/yr

Both Hydrocarbon and Water Dewpoint Reduced in one process Price of VaporSep System: \$ 750,000-850,000

Economic Comparison – Dewpoint Control

Process	Installed Cost (MM\$)	Processing Cost (\$/inlet Mscf)
Propane Refrigeration	1.6	0.165
Membrane	1.1	0.098

Basis: 10 MMSCFD Plant/Lean Gas (3.9 GPM, 1185 Btu/SCF)

Propane Refrigeration Cost: Purvin and Gertz, June 1999, Private Study

Platform Associated Gas Treatment

Increased Oil Production:

870 Barrels/day

Value of Additional Oil Recovered (@ \$ 10/bbl):

\$ 3.0 Million/yr

Additional Power required:

470 hp

Price of VaporSep System: \$1 - 1.25 Million

Fuel Gas Conditioning - Gas Engine Example

Membrane System Price: \$150,000

Process Conditions	Membrane Feed	Conditioned Fuel Gas
Temperature °F	95	51
Pressure (psia)	955	945
Flow Rates (MMscfd)	0.95	0.5
Octane Number	113.7	116
Hydrocarbon Dewpoint (°F) 95	37

Fuel Gas Conditioning - Gas Turbine Case

Fuel Gas Flow Rate (MMSCFD): 6.1

Feed Temperature (°F): 120

Conditioned Fuel Dewpoint(°F): 76

NGL Recovered (gpd): 15,000 Value of Recovered NGL (US \$): 500,000

Membrane System Price (US \$): 400,000 - 600,000

Typical Fuel Conditioning Skid-mounted Unit

Designed for Offshore Installation

Main System Components

Membrane Modules/Housings Filter Separator/Coalescer Inlet and Discharge Valves

System Dimensions: 6 ft (W) x 8 ft (L) x 8 ft (H)

Location: Nigeria

Flow Capacity: 2.5 MMSCFD Pressure rating 550 psig Operating pressure: 220 psig

Feed hydrocarbon dewpoint: 82°F Conditioned Gas Dewpoint: 20°F

Advantages of Membrane Systems

- Simple passive system
- High on-stream factor (typically > 98%)
- Minimal or no operator attention
- Small footprint, low weight (Platform Applications)
- Ambient temperature operation in many applications
- Large turndown ratio
- Low maintenance
- Lower capital and operating costs

Summary

Wide range of applications in the Oil, Gas and Refining Industries

Gas: Fuel gas conditioning, NG dewpointing, Natural Gas

Dehydration.

Oil: Associated gas processing, Vapor recovery from storage tanks

and transportation.

Refining: LPG/Fuel gas, Hydrotreater/Hydrocracker Purge, Refinery gas

plant, Hydrogen recovery.

